
LLM for Performance
Working Group Outbrief

Scalable Tools Workshop 2025



Performance Optimization Research Overview

● Creating evolution benchmarks to understand architectural optimization and 
GPU performance gaps in LLMs

● Collected dataset of inefficient vs optimized code from GitHub repositories
● Two categories analyzed:

○ Sequential optimizations (e.g., loop invariant code motion)
○ Parallelization optimizations (using OpenMP)

● Testing methodology includes:
○ Correctness tests
○ Runtime optimization measurements
○ Compiler output validation (-O3 flags)



Benchmarks

● Probir has begun collecting benchmarks
○ OpenMP parallelism
○ Loop-invariant code motion

● Compare
○ Original
○ Human optimized
○ Best LLM-generated code

● Use prompts to direct code improvements
○ Two approaches

■ Prompts just tell the LLM to use its knowledge to improve the program
● Multi-step process (guess and check) to see what helps

■ Detailed prompts that provide a lot of optimization suggestions. Use the LLM to perform the complex 
changes according to the advice

● Evaluate LLM code generation
○ Examples came from leetcode

■ Mostly sequential code
○ Need to understand why LLM is performing poorly in certain cases



Training Strategies

● Examples from AMD programming contest
● Neutrino paper shows tuning of flash attention model by improving its memory 

access patterns
● Idea

○ Train a model to use a profiler so that it can collect data to understand a bottleneck
○ Use PC sampling to identify where bottlenecks are to provide guidance to LLM about what 

needs to be improved
● Need to assess what problems are the most important at particular scales
● Can prune performance information (e.g. HPCToolkit data) to what is most 

relevant to simplify training
● How to make experiments less costly

○ Try to get scaling predictions and reduce the number and scale of experiments needed



LLM Code Optimization Experiments

● Used multi-step prompting approach for code optimization
● Process includes:

○ Initial code analysis
○ Performance reasoning
○ Code generation
○ Testing across multiple iterations

● Results show LLMs can sometimes outperform human optimizations
● Key challenge: LLMs need context-specific information to make optimal 

decisions
● Example success: Generated better OpenMP code with specific scheduling 

guidance



Performance Analysis Tools Integration

● Discussion of Neutrino paper (March 2025)
● Analysis of Flash Attention versions showing memory access patterns:

○ Flash Attention v1
○ Flash Attention v2
○ Naive implementation

● Integration of profilers with LLMs to:
○ Identify bottlenecks
○ Analyze memory access patterns
○ Guide optimization decisions



Project Updates

● Development of ChatHPCtoolkit
● Pedro Valero Lara’s work on ChatKokkos

○ Translating Fortran kernels to Kokkos C++
○ Using codalama



Key Challenges Identified

● Scale-dependent performance issues
○ Small vs large-scale optimization differences
○ MPI communication becoming critical at 1000+ GPUs

● Measurement challenges:
○ Performance measurement noise
○ Trade-off between granularity and perturbation
○ Need for better metrics beyond wall clock time

● Compiler limitations:
○ NVIDIA compiler weaknesses in code optimization
○ Manual intervention often required for optimal performance



Action Plan

● Scraping github for commits from leetcode that tune performance is a great 
way for identifying code for training

● Using an LLM to synthesize unoptimized and optimized code examples based 
on a commit

● Use examples from AMD contest to create training examples: code with 
various features paired with performance information about the code

● What kinds of performance features do we need to consider
○ Memory access patterns
○ Memory footprint
○ Wall clock time

● Curate database of performance problem patterns



Resources

● Marco: A multi-agent system for optimizing HPC code generation using large 
language models.
○ Rahman, A., Cvetkovic, V., Reece, K., Walters, A., Hassan, Y., Tummeti, A., 

Torres, B., Cooney, D., Ellis, M., & Nikolopoulos, D. S. (2025). arXiv preprint 
arXiv:2505.03906.

○ https://arxiv.org/pdf/2505.03906
● Neutrino: Fine-grained GPU Kernel Profiling via Programmable Probing.

○ Huang, S., & Wu, C. (2025). OSDI 2025.
○ https://open-neutrino.github.io

● Hugging Face Kernelbot Data
● Surprisingly Fast AI-Generated Kernels We Didn’t Mean to Publish (Yet)
● hpcresear.ch

https://arxiv.org/pdf/2505.03906
https://open-neutrino.github.io
https://huggingface.co/datasets/GPUMODE/kernelbot-data
https://scalingintelligence.stanford.edu/blogs/fastkernels/
http://hpcresear.ch


Participants
Jonathan Madsen

Terry Jones

Probir Roy

John Mellor-Crummey

Yumeng Liu

Yuning Xia

Gustavo Morais

Hsuan-Heng Wu

Edgar Leon

Please add your name


